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1. Introduction

This is the first deliverable of work package 4000, which focuses on species distribution models 

(SDMs). These models use adequate statistical and machine learning methods to relate species 

occurrence  records  to  prevailing  environmental  conditions.  The  fitted  species-environment 

relationships  can then aid  the identification of  suitable  habitats  for  species  by  predicting the 

habitat suitability in space if geographic information of environmental layers is available.

As  this  deliverable  is  the  foundation  for  the  upcoming  deliverables  in  work  package  4000  it  

describes the work flows implemented to build, train, and test the species distribution models. It 

further focuses on the species occurrence data collection and data preparation needed for the 

models, describing the different filtering steps to ensure high data quality. Lastly, it names and 

describes the different datasets that contribute occurrence data and environmental data.
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2. Species distribution models

Species distribution models (SDM) are the most widely used modelling tool in ecology (Guisan et 

al., 2017). They predict habitat suitability over space and time and require comparably simple data 

inputs, mainly information about species occurrence in the form of presence-only or presence-

absence data and geographic information of environmental variables (Fig 1). The main modelling 

steps  are  conceptualisation,  data  preparation,  model  fitting,  model  evaluation,  and prediction 

(Zurell et al., 2020). Conceptualisation involves gathering all necessary species information to build 

a preliminary understanding of species ecology (D2.2) and carefully planning the data preparation 

and  modelling  workflow  (this  deliverable).  Data  preparation  relates  both  to  species  data  (cf.  

section 3) and environmental data (D3.1). It also involves matching all data at a common spatial  

resolution and extent, and spatially thinning the species data to avoid any problems due to spatial  

autocorrelation.  Model  fitting  describes  the  actual  calibration  of  the  species-environment 

relationship and any preliminary modelling steps such as variable pre-selection to avoid problems 

of multicollinearity. A multitude of statistical and machine learning algorithms are available to fit 

SDM,  each  with  different  strengths  and  weaknesses  (Elith  et  al.,  2006;  Valavi  et  al.,  2022). 

Considering these different algorithms is important to account for uncertainty in the modelling  

process  (Araújo  &  New,  2007;  Thuiller  et  al.,  2019) and  it  is  generally  recommended to  use 

ensembles of at least three different algorithms that are as unrelated as possible  (IUCN 2021). 

Model evaluation is crucial for ascertaining the predictive performance of the model when making 

predictions to independent data and different times and places. Especially, when the models are  

being  used  for  guiding  management  decisions,  high  predictive  performance  is  of  utmost 

importance. Typical procedures for model evaluation include x-fold cross validation, where the 

data are split into x folds and the model is recalibrated on (x-1) folds and then predictions are  

evaluated on the hold-out fold.  More recently,  it  has been recommended to use block cross-

validation where the folds are structured in geographic or environmental space to better assess 
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predictive  performance  when  extrapolating  (Roberts  et  al.,  2017).  Finally,  after  successful 

evaluation of the model, the SDMs can be projected into geographic space by predicting them to 

geographic layers of environmental information. The predicted habitat suitability ranges from 0, 

very low suitability, to 1, perfect suitability.

Figure 1: SDM concept. First, it has to be determined which environmental conditions a species  
experiences.  Second,  a  species-environment  relationship  is  identified using a  model  algorithm.  
Third,  this  relationship is  used to predict  habitat  suitability.  Based on the habitat  suitability  a  
species potential distribution can be determined.
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Generally,  SDMs  are  used  to  determine  the  environmental  conditions  that  limit  species 

distributions. Thereby, it is important to consider that ecology is highly hierarchical and species 

distributions are limited by different environmental conditions at different spatial scales. At large 

spatial scales (large extents, coarse grain), climate is the main driver of most species distributions,  

where as  at  smaller  spatial  scales  (smaller  extent,  fine grain),  other factors  like land use and  

habitat availability are more important determinants of fine-scale distribution of species (Guisan & 

Thuiller, 2005; Fig. 2). 

In BirdWatch, the goal is to fit SDMs for different farmland bird species at fine spatial resolution  

for the different test regions and assess how different land uses and land use intensities affect  

species distributions. Initially, these SDMs will be calibrated separately for each test region while 

at later stages (WP4400), we will also test cross-region transferability in order to assess whether 

these models could be applied to the entirety of Europe. A major challenge here is that we find 

long environmental gradients in Europe and our test regions are situated in different climate zones 

in Europe. To ensure cross-predictability of the models, we thus need to consider both large-scale 

climatic conditions that limit the distribution of species across Europe and fine-scale land use and 

habitat conditions that limit the distribution of species within the study regions. This challenge was 

not anticipated in the project proposal and required slight adaptations in the planned workflow. 

Specifically, we adapted the SDM workflow to use so-called nested SDMs that we further describe 

below.
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Figure 2: Impacts of scale on drivers of species distribution. The two drivers shown are climate and  
habitat. The bars indicate the impact of each driver depending on the scale considered. The vertical  
axis on the left represents the scale (global, country, regional, and local).

2.1 Nested SDMs
Nested SDMs account for the scale dependency in factors limiting species distributions. Climate is 

often the main determinant of large-scale species range limits while land use and other habitat  

factors determine the fine-scale distribution of species.  Here,  we adopted such a nested SDM 

design that allows to delineate for each species the areas of climatic suitability across Europe and 

10



within climatically suitable areas describe the land use and land use intensity levels the species 

prefers. 

Fig. 3 summarises the conceptual workflow of our nested SDMs (Adde et al., 2023; Pearson et al., 

2004). First, we will fit coarse-grain SDMs to climatic data and then use the predicted climatic 

suitability as a predictor within the fine-grain SDMs additional to predictor variables related to 

land  use  and  land  use  intensity.  For  the  coarse-grain  SDMs we use  data  from the  European 

breeding  bird  atlas  at  50  km spatial  resolution whereas  for  the  fine-grain  SDMs we use  bird 

occurrence data from different regional sources (cf. section 3). At both scales, SDMs are fitted 

using an ensemble approach with five different algorithms that differ in their model flexibility or 

complexity  and  in  their  extrapolation  behaviour  (generalised  linear  models,  GLM;  generalised 

additive models, GAM; random forest, RF; boosted regression trees, BRT; Maxent). First, for each 

species the  coarse-grain SDMs will be fitted to coarse-grain climate data using these five different 

SDM algorithms, and then an ensemble will  be constructed using the mean predicted climatic 

suitability over all algorithms. Second, for each species fine-grain SDMs will be constructed using 

the same five SDM algorithms and using the ensemble climate prediction and the land use and 

habitat predictors derived from earth observation (WP3000) as predictor variables. The resulting 

fine-grain predictions of species distribution will also be summarised within an ensemble approach 

and the resulting predictions and their associated uncertainty will then feed into WP5000. Below,  

we describe the different SDM algorithms and ensemble approaches in more detail.
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Figure 3: Nested SDM framework. The covariate nesting method is presented in which the habitat  
suitability output from a global SDM is used as one of the inputs for a regional SDM. The three  
panels at the top represent the workflow of the global SDMs, whereas the bottom three represent  
the workflow from the regional  SDM. From left to  right  are  the three main work steps:  data  
preparation, model building and testing, and model predictions.

2.1.1 Variable pre-selection
At  each  spatial  scale  considered,  we  will  pre-select  weakly  correlated  variables  as  candidate 

predictors in our SDM. This step is important to avoid or reduce problems of multicollinearity 

(highly correlated predictor variables) that can lead to inflated errors in the models, hinder the 

correct  identification  of  the  most  relevant  predictors  in  the  model  and  reduce  extrapolation 
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ability. We will use the simple yet highly effective method “select07” where we first check for  

linear correlations between all potential pairs of predictor variables and then remove from pairs 

with an absolute correlation coefficient greater than 0.7 the less important variable (Dormann et 

al., 2013). Variable importance will be assessed using univariate models within a five-fold cross-

validation design. For this, we will fit for each predictor variable a univariate generalised linear 

model (GAM) using a logit link function and 4 degrees of freedom on four of five folds, cross-

predict the model to the hold-out fold and calculate the explained deviance over all folds. The  

explained deviance then serves as univariate variable importance in the select07 method.

 

2.1.2 SDM algorithms
We will use five different algorithms to fit SDMs: generalised linear models (GLM), generalised 

additive models (GAM), random forest (RF), boosted regression trees (BRT), and Maxent. GLMs 

and  GAMs  belong  to  regression-based  methods  while  RF,  BRTs  and  Maxent  belong  to  non-

parametric machine learning techniques. 

GLMs are parametric  regression models  that  use the logit  link function to fit  linear  or  higher  

polynomials to establish the species-environment relationship. We will use linear and quadratic 

terms (second-order polynomials) in GLMs and use an AIC-based stepwise variable selection. In 

the fine-grain model, climatic suitability is forced as predictor and will not be removed during the 

stepwise variable selection. 

GAMs are semi-parametric regression methods that use data-defined, non-parametric smoothing 

functions  to  fit  non-linear  species-environment  relationships.  GAMs  do  not  fit  the  response 

function to all data points at once, but use a moving-window approach to fit a local smoother to a 

proportion of the data. Small window sizes will yield highly flexible response shapes while large 

window sizes will produce less flexible response shapes that are closer to a parametric GLM. Here,  

we will use cubic smoothing splines with up to 10 degrees of freedom. 
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Both RFs and BRTs are based on regression trees and use model averaging to reduce overfitting 

problems of  simple regression trees  that  are sensitive to local  optima and noise in  the data. 

Specifically, RFs use a bagging procedure for averaging the outputs of a multitude of different 

regression trees. Bagging stands for “bootstrap aggregation”. Basically, this procedure fits many 

regression trees to bootstrapped samples of the training data and then averages the results. An 

important feature of RFs are the out-of-bag samples, which means that the prediction/fit for a  

specific data point is only derived from averaging trees that did not include this data point during 

tree  growing.  Thus,  the  output  of  RFs  is  essentially  cross-validated.  RFs  estimate  variable 

importance by a permutation procedure,  which measures for each variable the drop in mean 

accuracy when this variable is permutated.

BRTs use boosting as an alternative averaging approach for improving the predictive performance 

of  tree-based  methods.  BRTs  iteratively  fit  relatively  simple  trees  by  putting  emphasis  on 

observations fitted poorly by the previous trees, i.e. by fitting the new tree to the residuals of the  

previous tree. The final BRT can be thought of as a linear combination of all trees, similar to a  

regression model where each term is a single tree (Elith et al., 2008). Thereby each tree is shrunk 

by the learning rate (the shrinkage parameter, typically <1), which determines how much weight is 

given to single trees. Similarly to RFs, only a subset of the data (the bag fraction) is used for fitting 

consecutive trees (but in contrast to RFs, the subsets are sampled without replacement and thus 

constitute real data splits). This bag fraction should typically range 0.5-0.75 (Elith et al., 2008). The 

tree complexity  controls  the interaction depth;  1  means only  tree stumps (with  two terminal 

nodes) are fitted, 2 means a model with up to two-way interactions etc. We will optimise the 

number of trees based on the decrease in deviance when validating the trees on the out-of-bag 

fraction (Elith et al., 2008).

Maxent is a popular machine learning method that aims to minimise the relative entropy between 

the probability density of presences and the probability density of the environment estimated in 

environmental space. The density of available background data in environmental space can be 
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regarded as the null model that assumes that the species will occupy environmental conditions 

proportional to their  relative availability in the landscape  (Guisan et al.,  2017).  Maxent allows 

fitting very complex, highly non-linear response shapes (Merow et al., 2013), defined by so-called 

feature classes. Maxent currently recognises six feature classes: linear, product, quadratic, hinge, 

threshold and categorical. If not otherwise specified by the user and if the data contain more than 

80  presences,  then  Maxent  will  by  default  use  all  feature  classes  in  model  fitting,  for  fewer 

presences  it  will  automatically  determine  the  number  of  features  based  on  the  number  of 

presences. During model fitting, Maxent will select features based on regularization, trading off 

likelihood and model complexity to avoid overfitting.

All of the SDM algorithms used require some form of absence or background data to contrast the 

species  presences.  If  standardised  survey  data  exist  that  provide  both  presence  and absence 

information, these data can be directly used in the models. By contrast, if only opportunistic (e.g. 

citizen  science)  data  are  available  that  provide  presence-only  data,  then  background  data  or 

pseudo-absence data need to be derived prior to model building. In such cases, we will generate 

pseudo-absence or background data using guidelines provided by Barbet-Massin et al., 2012. All 

resulting  data  sets  will  be  spatially  thinned  to  avoid  problems  of  spatial  autocorrelations. 

Specifically, we will thin to a distance twice as long as the spatial resolution. 

2.1.3 SDM ensemble and predictions
In ensembles, predictions can be combined or averaged in different ways  (Thuiller et al., 2009). 

Here, we will use different ensemble approaches for the coarse-grain and the fine-grain models. 

For the coarse-grain climatic model, we will  calculate simple averages of predictions using the 

arithmetic mean of the predictions from the single SDM algorithms. This yields a single ensemble 

prediction of continuous climatic suitability values for each species that can be fed into the fine-

scale SDMs as predictor.
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The fine-grain SDMs will serve as input to the BirdWatch optimisation algorithm (WP5000) where 

we want to optimise the management decisions under uncertainty. To this end, we will generate  

different predictions from the fine-grain SDMs based on two different ensemble approaches and 

also report uncertainty in SDM predictions. As the first option, we will derive simple averages of 

continuous habitat preference values for each species along with the standard deviation of the 

predictions  from the single  SDM algorithms.  As  a  second alternative option,  we will  derive  a 

committee  average  by  first  converting  our  continuous  to  binary  predictions  for  each  SDM 

algorithm. Binary predictions represent predictions of potential presence and potential absence 

and will be achieved by applying a simple threshold to the continuous habitat preference values 

using  the  maxTSS  approach  that  aims  to  identify  the  threshold  that  maximised  the  true  skill 

statistic TSS (or sum of true positive and true negative rate). Then, these binary predictions are 

summed up and divided by the maximum number of algorithms used yielding a prediction of how 

many SDM algorithms agree that the species should be present at a specific location.

2.1.4 Joint species distribution models
In  the  original  BirdWatch  proposal,  we  additionally  suggested  fitting joint  species  distribution 

models (JSDMs) to improve predictions of local  species assemblages.  JSDMs simultaneously fit 

species-environment relationships for many species together with their residual co-variation. This 

residual  covariation can  be  indicative  of  interspecific  interactions,  spatial  effects,  and  missing 

environmental predictors. 

After careful consideration, we decided against using JSDMs in the BirdWatch model. First, due to 

the hierarchical nature of our species data, we had to adopt a nested SDM approach and thus a  

more complex SDM workflow than originally anticipated. Second, it has been shown repeatedly 

that JSDM do not improve predictive accuracy over more classical SDMs (Wilkinson et al., 2019; 

Zurell et al., 2019) and need to be interpreted with great caution (König et al., 2021; Poggiato et 

al., 2021). Thus, their implementation would not yield improved predictions of habitat preference 
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for the different farmland birds. Last, getting high-quality bird distribution data for all our farmland 

birds proved challenging. Specifically, standardised survey data with presences and absences are 

not available for all test regions (cf. section 3) and we thus needed to adopt modelling workflows  

to presence-only data that require pseudo-absence or background data generation. Current JSDMs 

algorithms require presence-absence data and no JSDM methods have been developed yet to deal  

with presence-only data. 

For these various reasons, we decided against using JSDMs in BirdWatch but are at the same time 

very confident that the exclusion of JSDMs strengthens rather than weakens our approach.

2.2 SDM evaluation
Within WP4200 and WP4300 we will use five-fold cross-validation to evaluate model predictive 

performance  while  in  WP4400 we will  cross-predict  the  models  to  different  test  regions  and 

validate the predictive performance against  the occurrence data from those regions.  In either 

case, we will use a suite of different performance measures to receive a broad view of model  

predictive  accuracy.  Specifically,  we  will  use  the  threshold-dependent  measures  sensitivity, 

specificity and TSS (true skill statistic) and the threshold-independent measure AUC (area under 

the ROC, receiver operating characteristic, curve). Sensitivity is the true positive rate, meaning the 

number of correctly predicted presences, and specificity the true negative rate, the number of 

correctly predictive absences. Both range between 0 and 1. TSS is a composite measure defined as  

sensitivity  +  specificity  -  1,  and ranges between -1 and +1.  All  three measures require binary 

predictions,  thus  the  continuous  SDM  prediction  first  needs  to  be  converted  into  a  binary 

presence-absence prediction. As indicated in section 2.1,  we will  use the maxTSS approach to  

identify an optimal threshold. AUC is calculated by quantifying sensitivity (true positive rate) and 

specificity (true negative rate) for many potential thresholds along the entire range of predicted 

occurrence probabilities. Then, 1-specificity (false positive rate) is plotted on the x-axis against 

sensitivity on the y axis and the AUC is then defined as the integral under this curve. AUC ranges  
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between 0 and 1 with 1 indicating perfect discrimination, 0.5 indicating random prediction and 0 

indicating mirror-inverted predictions. If we would take a random presence and a random absence 

from our  observations  and make predictions,  then  AUC can  be  interpreted  as  the  chance  of  

assigning a higher predicted occurrence probability to the presence compared to the absence 

point. Typically, we regard AUC>0.7 as indicating fair predictions.

3. Data

The data we gathered for this deliverable will be the foundation for building the SDMs for the 

different regions and thus for the upcoming deliverables of work package 4000. To build the SDMs  

we require two types of data: 1. Species occurrence data, in the form of presence-absence or 

presence-only data and 2. Environmental data, such as land cover or crop types, as well as data 

that describes the climatic conditions experienced by the species.

Species occurrence data give information on where a species is present and can also be used to 

make  an  informed  guess  on  where  a  species  is  absent.  Besides  the  name  of  the  species,  

occurrence data always include the coordinate location and timestamp of where the species was 

observed,  usually  giving  the  year  and  month  of  observation.  Additional  information,  like  the 

geographic accuracy or the displayed behaviour are also commonly included. 

We  use  two  different  types  of  species  occurrence  data:  standardised  bird  survey  data  and 

opportunistic citizen science data. Standardised bird occurrence surveys provide high quality data 

at the cost of much higher collection effort, planning, and preparation. Not every region selected 

in the BirdWatch project has such datasets available. As an alternative, there are opportunistic 

citizen science datasets. Their data are collected in a less structured way, and are therefore of 

lower quality, but the availability and spatial coverage is much higher. For our regions, we used 

standardised data where obtainable and opportunistic citizen science data to infill gaps. Further 

18



information on standardised bird  occurrence surveys  and opportunistic  citizen science data  is 

given under section 3.2 and 3.3 respectively.

Environmental data are the second type of data needed for SDMs to form species-environment 

relationships.  The  data  provide  information  on  the  environmental  conditions  each  species 

experiences. We use coarse-grain climate data at a resolution of 50 x 50 km and European extent 

and fine-grain regional data describing the habitat requirements of the species at a resolution of 

200 x 200 m. Further information on the environmental data is given under section 3.5 and 3.6.

3.1 Occurrence data filtering and preparation
To identify suitable high quality occurrence data, regardless of data source type (standardised or 

opportunistic), we filtered the available data systematically. First, we determined if the data were  

verified by experts in bird identification. The verification was for example based on photographic 

evidence, the observer’s skill level in bird identification, or on the proximity to other observations 

of the same species. If an occurrence did not pass this validation phase, or validation did not take 

place at all, we did not include that record. To ensure the presences represented highly suitable  

habitats  we  only  included  presences  that  represented  breeding  bird  occurrences.  To  identify 

breeding presences, we filtered by breeding period and behaviour displayed during observation. 

For Germany and Flanders the breeding season ranges from March to June, for South Tyrol from 

April to July, and for Lithuania from March to July. The breeding seasons were determined based 

on expert opinions of ornithologists active within the BirdWatch regions. Behaviours that ensure 

or indicate breeding birds were, for example, a bird actively breeding, building a nest, or displaying 

territorial behaviours. Next, we filtered by the geographic accuracy of the observation. For many 

observations, the exact location of the bird is not known, for example, when it was identified only  

by sound. In those cases, an accuracy measure in metres is given, and we only included presences  

within 100 metres. This distance was based on the resolution of the regional environmental data,  

which is 200 x 200 m and the home range size of our study species (D2.2). The selected accuracy 
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ensures that the observation is associated with the correct environment for the given location.  

Lastly,  the  occurrence  data  had  to  align  with  the  spatial  extent  and  resolution  of  the 

environmental  data  (grid  of  200  x  200  m).  To  ensure  an  environmental  grid  cell  was  not  

overrepresented by species occurrences, we removed duplicates where more than one species 

record lay within a grid cell. 

We ran these filtering steps for several different years per region to identify the most suitable 

year. The year chosen was not necessarily the year with the most occurrences in total but in which 

all species had comparably high numbers of occurrences to build the models, with preference for  

more recent years. This resulted in the year 2022 for Germany, South Tyrol, and Lithuania. For 

Flanders,  we had to  decide on the year  before  we were able  to  filter  the  data  to  allow the  

environmental data compilation to commence. Within the BirdWatch consortium, we decided on 

the year 2018, which provides good amounts of occurrence data for most species. Table 1 gives an  

overview of the available high-quality data for the region of Flanders, South Tyrol, and Lithuania  

after applying the aforementioned filtering steps. For Germany, these numbers correspond to the 

maximum available occurrence points.

In  case a species  was rare and regional  datasets  provided only  a  few high-quality  occurrence 

points, we checked additional data availability in a global dataset (eBird). However, due to quality  

criteria in our filtering steps this yielded no additional data points. Thus, some species or even 

entire regions (South Tyrol) had only a few occurrence points after filtering. Within work packages 

4200  and  4300  we  will  test  the  effect  of  different  filtering  steps  on  model  building  and 

performance.  Depending  on  the  result,  we  might  not  have  to  filter  the  occurrence  data  as 

rigorously,  which would increase the number of  occurrences for  rare species  and might  have  

positive effects on their model performance. If no solutions can be found, it is possible that some 

species cannot be modelled for a region due to insufficient amounts of data.
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Table  1:  Number  of  species  occurrence  data  (before  spatial  thinning)  for  the  four  regions  of  
BirdWatch. 

3.2 Standardised bird occurrence surveys
Standardised  surveys  in  biology  and  more  specifically  ecology  collect  data  that  are  highly  

comparable  and  informative.  Data  collection  is  based  on  standardised  protocols  and  along 

predefined routes or transects. The observers, often volunteers, are skilled in bird recognition and 

can identify birds based on sight as well as sound. Complete checklists are used when an area is  

surveyed, meaning that all birds present are documented. The advantage of listing all observed 
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species is that locations where a species was not detected can then be interpreted as an absence  

with high certainty. 

Survey locations are strategically distributed across the area to serve as representative samples, 

ensuring coverage of  the entire area without the need to sample every individual  section. To 

minimise biases and have the data as comparable as possible between sites and years the same 

sampling procedures and methods are used every time. To reduce observer bias, which is caused 

by differences in the ability to identify birds, observers have to pass a test that ensures they are  

proficient in bird identification. Sample effort, the amount of time spent to survey a single location 

with higher effort increasing the likelihood to observe species, is kept the same for all locations 

ensuring a low effort bias. Spatial bias, when areas are over or under sampled, is accounted for by 

placing the survey areas in a way that represents the entire study area with its different habitats.  

This also accounts for accessibility bias, that some areas are sampled more or less often, because 

of their accessibility. To reduce seasonal bias, the surveys are always held during the same time of 

the year. For birds, this period is often during their breeding season, since a breeding habitat is a  

good  indication  of  habitat  suitability.  Data  are  always  collected  at  the  same  time  of  day  to 

minimise temporal bias in bird detectability because of differences in activity during the day. To 

reduce weather bias, which is caused by different weather conditions affecting the likelihood of  

observing birds, the surveys are only held on days with comparably good weather conditions while 

rainy or very windy days are excluded. At the end of a survey period, all data are checked for  

potential errors, such as typos and then cleaned by the organisation that coordinated the surveys. 

Data not meeting the standards of the survey are discarded, resulting in the final data being highly  

comparable with a low bias.

Within  BirdWatch  we  obtained  standardised  bird  occurrence  survey  data  from  the  European 

Breeding  Bird  Atlas  (EBBA2),  the  Dachverband Deutscher  Avifaunsiten  (DDA),  the  Museum of 

Nature South Tyrol,  and the Lithuanian Ornithological  Society  (LOD).  An overview of  the data 
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sources for the different regions is provided in figure 4 while the data will be described in more 

detail in the following sections.

Figure 4: Data sources. Overview on the different data sources that contributed occurrence data  
for their respective region. The data sources were separated by opportunistic citizen science data  
(top row) and standardised surveys (bottom row). The data for Lithuania was provided by the  
Lithuanian Ornithological Society (LOD).

3.2.1 European Breeding Bird Atlas

EBBA2 is one of the largest European standardised bird survey projects that ever took place (EBCC, 

2022; Keller et al., 2020). The goal of EBBA2 was to get an overview of the distribution of breeding 

birds for the whole of Europe. The project was led by the European Bird Census Council and the 

atlas was published in 2020. Organisations from 48 different countries were involved in the data 

collection,  with  around  120,000  fieldworkers  contributing  to  the  project,  most  of  them on  a 

voluntary  basis.  Recorded  were  breeding  species  occurrences,  whereas  birds  occurring  only 

temporarily,  for  example,  when migrating  through an  area  or  only  staying  over  winter,  were 

excluded.  The  breeding  occurrences  were  further  divided  into  categories:  possible  breeding, 
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probable breeding, and confirmed breeding. These categories were introduced by the European 

Ornithological  Atlas  Committee  and  are  widely  used  in  European  national  atlases  and  online 

platforms. An observation was classified as “possible breeding” when a bird was observed during 

the breeding season in a possible nesting habitat or when a singing male or a male that used 

breeding  calls  was  present  during  the  breeding  season.  Under  “probable  breeding”,  were 

occurrences where a pair was observed in a breeding habitat, an individual displayed courtship 

behaviour,  or  individuals  were  seen building  a  nest.  Lastly,  an  occurrence  was  considered  as 

“confirmed breeding” when a used nest or eggshells  were found, recently fledged young was 

observed, or a nest with eggs or young in it was observed. For the species distribution models, all  

categories were included as presences. The occurrence data were mainly collected over a time 

span of 5 years, from 2013 to 2017. Four different data sources were used in EBBA2: 1. atlas data 

(which were collected during national or regional projects), 2. monitoring data (general monitoring 

as  well  as  species-specific  monitoring),  3.  casual  observations  (often  stemming  from  online 

platforms), and 4. surveys conducted for EBBA2. The usage of different data sources for EBBA2 

was considered necessary and advantageous because the different situations in each country and 

data availability could be considered This ensured a complete coverage of the European continent, 

with a spatial resolution of 50 km.

3.2.2 Dachverband Deutscher Avifaunisten

The DDA is a German avifaunistic umbrella organisation for birding clubs and individual birders 

(https://www.dda-web.de/). One of their main tasks is the coordination of several bird occurrence 

data surveys.  The Monitoring of  Common Breeding Birds (MCB) provides data on the species 

relevant to the BirdWatch project and will be used to build the SDMs for the region of Germany.  

The MCB started in 1989 and was updated in 2004 to make the data collection more standardised. 

The goal of MCB is to have comparable yearly occurrence data on breeding birds to be able to 

infer  population trends.  To  achieve  this  goal,  more  than  2,600,  1  x  1  km sample  plots  were 
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distributed across Germany, based on a stratified random sampling approach. The first stratum 

describes the “environmental regions” of Germany, i.e., regions with similar abiotic attributes like 

climate, slope and elevation, and soil. The second stratum refers to land-cover types, e.g., arable 

land, settlements, forests, and other special habitats like heathlands, mires and bare soils. With 

these  two  categories,  the  whole  of  Germany  can  be  represented.  Volunteers  with  sufficient 

knowledge of bird identification survey the sample plots by walking a 3 km long route during the 

morning hours on days with suitable weather conditions. Each sample plot is surveyed four times 

per year between the 10th of March and the 20th of June. During each survey, the observer notes 

down  all  birds  they  hear  or  see  and  determines  territories  for  each  species  based  on  the 

observations. The summarised territory maps are then the final output of the MCB survey. We will 

use these simplified territory maps and derive bird occurrence data at the target spatial resolution 

of 200 m.

3.2.3 Museum of Nature South Tyrol

The Museum of Nature South Tyrol provided standardised occurrence data for the South Tyrol  

region. They collected the data as part of different monitoring and research projects. The surveys 

were carried out by bird experts skilled in bird recognition. For their data collection, they used 

standardised protocols for point counts. The point count data collection was conducted by walking 

along transects and stopping every 200 m. At each stop, 10 minutes were spent by the observer to 

document all birds heard or seen. The transects went along mountain areas as well as open areas.  

The point count surveys were conducted two to three times a year during the breeding season.  

The surveys were done early during the day (5:30 to 11:30 am) on days with reasonable weather 

conditions, e.g., no rain or strong winds. The point count data came with two accuracy classes, 

more and less than 100 metres. During their surveys they only collected data on seven out of the  

10 species relevant for BirdWatch. The other three species do not breed in the region of South 

Tyrol; this information is based on expert opinion and backed up by the data. These three species  
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are the Black-tailed Godwit (Limosa limosa), Northern Lapwing (Vanellus vanellus), and Meadow 

Pipit (Anthus pratensis). 

3.2.4 Lithuanian Ornithological Society

We  received  occurrence  data  for  Lithuania  from  the  LOD  (https://www.birdlife.lt/).  It  was 

collected  as  part  of  the  “Common  Bird  Population  Abundance  Monitoring  project” 

(http://www.ipgs.lt/), which was initiated in 1985 to provide data on bird abundance and change 

(Kurlavicius, 2004). In their project, they used the point count method and a standardised protocol 

to collect the data. The point data were collected by walking along approximately 10 km long 

routes that consisted of 20 stops, roughly 500 m apart from one another. Locations for routes  

were selected based on a random stratification approach. This ensured that the sample locations 

represented the whole of  Lithuania.  During each of  the twenty stops,  a skilled person in bird 

recognition via appearance and sound documented all birds observed within five minutes. This 

was done twice a year during the breeding season. Surveys were always conducted in the morning 

on days with suitable weather conditions, without strong winds or rain. Each observation was 

classified by how far away from the observation point the bird was observed. This resulted in  

three categories: 1) the bird was within 50 m of the observation location, 2) the bird was within 50 

- 100 m or 3) the bird was further away than 100 m. For the data to be included in our models, we 

only selected observations that fell into accuracy category 1 or 2.

3.3 Opportunistic citizen science data
Opportunistic citizen science data are data collected by volunteers in an informal and spontaneous 

manner.  Thus,  unlike  in  standardised  surveys,  the  data  collection  is  based  on  volunteers 

contributing observations taken during everyday activities without prior planning or coordination. 

An example of such opportunistic data is someone walking through a park, observing a bird, and 
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contributing this sighting to a database. This type of data comes with many advantages but also 

several disadvantages.

One major advantage is the tremendous amount of data that is generated in this way. This can be 

attributed to the simplicity of data collection and the amount of people that can contribute data.  

Another  reason  is  its  cost-effectiveness.  Much  less  organisation  and  planning  has  to  go  into 

collecting data with volunteers using their own resources to make observations. Because so many 

people  participate  in  the  data  collection,  a  wide  geographic  and  temporal  coverage  can  be 

achieved  spanning  over  entire  countries  and  many  years.  Data  are  collected  much  more 

frequently, which can reduce problems of imperfect detection and give a more complete picture 

of suitable species habitats.

On the downside, the lack of structure during data collection leads to lower quality in the data and 

decreases comparability between the different observation events. After data collection, it is often 

difficult  to implement measures that ensure data quality if  certain information is  missing.  For 

example,  if  no  information  is  given  on  how  long  the  observer  spent  at  a  location  or  which 

behaviour the species displayed during observation, it is not possible to acquire this information 

post hoc. The lack of standards and missing structure for data collection introduce many sources 

of bias into the data.  People contributing vary in their  ability to identify birds,  introducing an  

observer bias. The fact that not all species observed have to be reported also adds observer bias.  

Observers can spend as much or as little time observing a bird, which can cause an effort bias.  

Another bias common in opportunistic data is spatial bias because some areas are visited more 

often than others. This is also caused by high accessibility bias, meaning that more accessible areas 

are visited more often, and thus more observations come from these areas. Observations can be 

made during any time of the day and during any weather conditions, introducing temporal and 

weather biases into the data. In order to minimise these disadvantages, organisations that collect 

opportunistic citizen science data often provide a protocol to people in order to make the different 

data entries more comparable with one another. It is then up to the observer to include as much  
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meta-information as possible. Further, these organisations often have quality controls in place. For 

example, bird experts or algorithms check data entries and flag observations that seem out of  

place. An unlikely observation could be a species that is very far away from its usual range or an  

observation  of  an  unusually  high  number  of  individuals  for  a  given  species.  In  addition,  we 

implemented several filtering steps described under the section “3.1 Occurrence data filtering and 

preparation” to ensure that all occurrence points met a similar level of quality.

Natuurpunt  and  eBird  were  identified  to  contribute  opportunistic  citizen  science  data  to  the 

BirdWatch project. In the following sections, we describe these two organisations and their data.  

An overview of which data sources were used for each region is found in figure 4.

3.3.1 Natuurpunt

Natuurpunt  (https://www.natuurpunt.be/)  is  an  NGO  from  Flanders  and  provides  localised 

occurrence data for  that  region.  It  is  the largest  nature conservation organisation in  Belgium, 

which hosts an opportunistic citizen science platform via the website https://waarnemingen.be/. 

Everyone  can  contribute  their  casual  bird  observations  to  this  opportunistic  citizen  science 

platform. To ensure species are correctly identified, all  data must be validated. There are five 

different validation categories: 1) definitely correct: the observer provided evidence, for example,  

photos,  or  the  observation  was  made  by  a  bird  expert  directly;  2)  very  likely  correct:  the 

observation of a species is in close proximity with the observation of the same species made by 

others; 3) possibly correct: the species identification was made by automatic image recognition; 4) 

not possible to verify: none of the aforementioned validation techniques could be applied to the 

observation; and 5) not checked yet: the observation has not been validated yet. To build the 

SDMs for Flanders, we only used data from the validation categories 1 and 2. 

Natuurpunt  further  ensures  data quality  through a  protocol  that  has  to  be filled out  by  data 

observers when uploading data. It is obligatory to always provide information on the date when 

the observation took place, which species was observed, and where the species was observed in 
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the  form  of  coordinates.  Additional  information  can  be  provided  if  available.  This  includes 

information on the accuracy of the coordinates in metres and information on the behaviour the 

species displayed while being observed.

3.3.2 eBird

eBird is a large global opportunistic citizen science project which documents bird distributions, 

abundance, habitat use, and population trends (https://ebird.org/home). We use data from their 

Basic  Dataset  (eBird  Basic  Dataset,  2023).  The  minimum  requirements  to  contribute  an 

observation to eBird are to provide the scientific name of the species, the date of the observation,  

and the location with coordinates. eBird provides observers with a protocol to provide additional  

information. This includes the behaviour displayed during the observation, indicating if the birds 

are breeding or not. If the information was given, we only included data that had the breeding 

category C3 (probable) or C4 (confirmed). Behaviours from category C3 included, for example, 

courtship or territorial defence behaviours, and from C4, when the bird was sitting in a nest or 

displayed a distraction behaviour. In addition, eBird ensures that all data are validated. In the first 

instance, the data are validated by an algorithm that determines if the observation shows unusual 

patterns. If  the algorithm flags an observation, the observer is contacted to provide additional 

information for validation. Then, a reviewer from eBird is consulted and makes the final decision 

on the validation status.

3.4 Absence data
To  form  a  reliable  species-environment  relationship,  most  SDM  algorithms  need  absence  or 

background data in  addition to presence data.  These data complement the presence data by  

providing information on where species do not occur and help to infer unsuitable environmental 

conditions. True absence data are rarely available for a given location because of the amount of 

29



effort  that  would  have  to  be  invested  to  minimise  imperfect  detection.  There  are  common 

alternative approaches that can be used to infer so-called pseudo-absences or background data, 

indicating locations where species likely did not occur and how many should be selected for SDM 

construction (Barbet-Massin et al., 2012).

Full species checklists, which include all observed and identified species during one period of data  

collection at a location and not just individual species, can be used to make an informed estimate 

on absence locations. In this case, an absence location is equal to a location where the study 

species  was  not  listed  as  present.  For  all  our  standardised  survey  datasets,  we  will  use  this  

approach to define absences.

For data where no full checklists were used, which is the case for our opportunistic citizen science 

data,  random background points  have to  be sampled to  train  the models.  Our  study  regions 

determine the spatial extent from which random points can be selected because outside of the 

study regions, we do not have environmental data to match the points.

3.5 Climate data
Climate is considered the main driver of a species distribution at coarse scales (McGill, 2010) and 

thus  determines  broad  areas  of  suitability.  We  obtained  climate  data  from  the  CHELSA 

(Climatologies at high resolution for the earth’s land surface areas) dataset  (Karger et al., 2017, 

2021). As parameters we used maximum mean monthly temperature, minimum mean monthly 

temperature, and mean monthly precipitation per year. The data came at a 1 km resolution, which 

we aggregated to a 50 km resolution to match the EBBA2 dataset. As changes in climate can have 

lagged effects on habitat occupancy of birds, we included climate data from the EBBA 2 collection 

period and the previous year (Albright et al., 2011). The years we selected climate data from were 

2012 - 2017. 

In our next step, we averaged each of the three climate variables for every month of every year 

across 50 x 50 km cells over the six years.  Based on these climate variables we calculated 19 
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bioclimatic  variables  -  i.e.,   bio1:  mean  annual  temperature;  bio2:  mean  diurnal  range;  bio3: 

isothermality; bio4: temperature seasonality; bio5: max temperature of the warmest month; bio6: 

min temperature of the coldest month; bio7: temperature annual range; bio8: mean temperature 

of the wettest quarter; bio9: mean temperature of the driest quarter; bio10: mean temperature of 

the  warmest  quarter;  bio11:  mean  temperature  of  the  coldest  quarter;  bio12:  total  annual 

precipitation; bio13: precipitation of the wettest month; bio 14: precipitation of the driest month; 

bio15: precipitation seasonality; bio16: precipitation of the wettest quarter; bio17: precipitation of 

the driest quarter; bio18: precipitation of the warmest quarter; and bio19: precipitation of the 

coldest quarter. These bioclimatic variables are commonly used in species distribution modelling 

(Booth et al., 2014).

3.6 Habitat data
Unlike climate data, habitat data plays a crucial role in shaping species distribution at finer scales 

(McGill, 2010) and determines where a species occurs. The data describing the species habitats 

are provided by our BirdWatch partners at a resolution of 200 x 200 m as part of work package  

3000. The habitat parameters were grouped into landscape features: crop type, land cover, and 

remote sensing.  The habitat  data will  be provided for each region for the year deemed most 

suitable based on the number of occurrences. For more detailed information regarding the habitat 

parameters, see deliverable “3.1. Database of geospatial data”.
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