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1. Introduction

Here  we  present  the  second  deliverable  of  work  package  4000,  which  applies  the

workflows discussed in deliverable 4.1 “Data, algorithms, and workflows of SDM” for the

first test region, Flanders. We present the results of the individual model building steps: (1)

data preparation and model training, (2) model validation, and (3) model predictions. The

models  and  final  predictions  of  habitat  suitability  will  then  feed  into  the  BirdWatch

optimization algorithm in WP5000.

2. Species distribution models

Species distribution models (SDMs) are the most widely used modeling tool in ecology

(Guisan et al., 2017). They use comparably simple data inputs such as species occurrence

data  and  geographic  information  of  environmental  variables  to  understand  species-

environmental  relationships  and  predict  habitat  suitability  over  space  and  time.  For

BirdWatch we use a nested SDM framework as described in deliverable 4.1 in which we

combine  European-wide,  coarse-grained  SDMs  of  climate  suitability  with  fine-grained

SDMs describing suitability of land use practices and intensity.  For all  SDMs, we built

ensembles  of  five  different  model  algorithms:  generalized  linear  models  (GLMs),

generalized  additive  models  (GAMs),  random  forest  (RF),  boosted  regression  trees

(BRTs), and Maxent.

2.1 Data and methods
We use a nested species distribution model approach to account for the scale dependency

in factors limiting species distribution  (Adde et al., 2023; Pearson et al., 2004). Climatic

factors are considered to drive a species’ distribution at large scales whereas land-use

factors drive a species’ distribution at finer scales. To apply the nested SDM approach we

constructed two sets of SDMs. The first was a set of SDMs trained at the European scale

with a resolution of 50 km considering climate variables.  The second was trained for the

region of Flanders at a resolution of 200 m considering land-use and other habitat factors.
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The EBBA2 dataset (European Breeding Bird Atlas; EBCC 2022; Keller et al., 2020)

provided the occurrence data in form of presence-absence data for the European SDMs.

Regions  where  a bird  species  was  not  detected  were  considered  as  absences.  The

climate data were obtained from the CHELSA dataset (Climatologies at high resolution for

the earth’s land surface areas; Karger et al., 2017, 2021).

Fine-scale data of bird occurrences within Flanders for the year 2018 were provided

by Naturpuunt (https://www.natuurpunt.be/),  a nature conservation  NGO from  Flanders.

Data were quality-checked, and rasterized to 200 m spatial  resolution as described in

D4.1. As the fine-scale occurrence data for Flanders were presence-only data, we created

background data in the form of pseudo-absences following recommendations by Barbet-

Massin  et  al.,  (2012).  Ten  times  as  many  pseudo-absences  than  presences  were

randomly selected in locations where no presences were detected. For  GLM and GAM

construction we assigned weights to the pseudo-absences such that the sum of weights of

pseudo-absences equaled the sum of presences. For the model algorithms RF, BRT, and

Maxent we split the pseudo-absences into ten equally sized groups and constructed ten

replicate  models  with  equal  number  of  presences  and  pseudo-absences.  These  ten

replicate models per algorithm were averaged resulting in one final output per algorithm

(Barbet-Massin et al., 2012). As environmental predictor variables within the regional SDM

we used the ensemble climate suitability derived from the European SDMs as well  as

habitat and land-use predictors derived from earth observation (WP3000;  Table S1).  To

avoid having spatial artifacts in our habitat suitability predictions, caused by the difference

in spatial resolution between our European and regional SDMs, we spatially interpolated

the climate suitability to a resolution of 200 m using the bilinear interpolation.

All  occurrence  data were  spatially  thinned  to  avoid  problems  of spatial

autocorrelation (Aiello-Lammens et al., 2015). The thinning distance was set twice as large

as the spatial resolution for each respective scale i.e., thinning distance of 100 km for the

coarse-grained European  data,  and  400  m  for  the  fine-grained  Flanders.  As  a  result

neither the presences nor absences fell  into adjacent cells. Due to the low number of

occurrences, we were not able to construct models for the species Red-backed shrike and

Whinchat. A summary of the final number of occurrences for Europe can be found in table

1 and for Flanders in table 2. The distribution of the final presence points for Flanders are

shown in figure 1. 
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Table 1: European occurrence numbers after thinning. The * indicates

species excluded from model construction for Flanders because of to

few occurrence points.

Species European presence European absence

Eurasian skylark

(Alauda arvensis)

585 298

Meadow pipit

(Anthus pratensis)

371 506

Yellowhammer

(Emberiza citrinella)

495 380

Red-backed shrike*

(Lanius collurio)

537 338

Black-tailed godwit

(Limosa limosa)

156 727

Tree sparrow

(Passer montanus)

602 272

Whinchat*

(Saxicola rubetra)

491 387

European turtle dove

(Streptopelia turtur)

463 421

Common starling

(Sturnus vulgaris)

633 249

Northern lapwing

(Vanellus vanellus)

515 370
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Table 2: Flanders occurrence numbers after thinning. The * indicates

species excluded from model construction for Flanders because of to

few occurrence points.

Species Flanders presence Flanders pseudo-absence

Eurasian skylark 

(Alauda arvensis)

843 14974

Meadow pipit 

(Anthus pratensis)

298 4985

Yellowhammer

(Emberiza citrinella)

524 8619

Red-backed shrike*

(Lanius collurio)

7 80

Black-tailed godwit

(Limosa limosa)

178 3114

Tree sparrow 

(Passer montanus)

57 725

Whinchat*

(Saxicola rubetra)

1 10

European turtle dove

(Streptopelia turtur)

68 1154

Common starling

(Sturnus vulgaris)

527 6460

Northern lapwing

(Vanellus vanellus)

857 11737
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Figure 1: Final occurrence data of study species in Flanders.

At  each spatial  scale  we tested  for  collinearity  to  identify  explanatory  variables

strongly correlated with one another. We used the select07 method (Dormann et al., 2013)

to  identify  pairs  of  highly  correlated  variables with  an absolute  correlation  coefficient

greater than 0.7, and out of these pairs retained the variable with higher univariate variable

importance. The latter was defined as the explained deviance which was obtained by each

univariate model within a five-fold spatial block cross-validation.  Univariate models were

fitted with binomial GAMs and four degrees of freedom if the respective predictor variable

held more than four unique values. Else, the univariate models were simplified (binomial

GLM with linear and quadratic terms if the predictor had three to four unique values, and

binomial GLM with one linear term if the predictor had less than three unique values). The
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spatial blocks for the cross-validation were determined following Valavi et al. (2019) using

a hexagon shape and the block size was optimized separately for each species based on

the spatial autocorrelation range of the occurrence data. Each species had a minimum of

15 blocks which were then grouped into five folds, i.e., a minimum three blocks per fold. As

a consequence all folds had similar amounts of presences and absences. Further details

regarding the general variable pre-selection can be found in D4.1.

We then constructed models at the European scale and at the scale of Flanders

using the five algorithms GLM, GAM, RF, BRT, and Maxent. All models were validated

using a five-fold spatial block cross-validation (with the same blocks as described above).

The  model  validation  metrics  considered  for  Europe  were  the  threshold-independent

metric AUC (area under the receiver operating curve) and the threshold-dependent metrics

sensitivity, and specificity, and TSS (true skill statistic). Additionally, for the fine-grained

presence-only models of Flanders, we quantified the Boyce index. It indicates how well the

model predicts presences and is thus especially suited for presence-only data. Its values

can range from minus one to one.

To ensure good predictive performance only models with an AUC score > 0.7 were

included in ensembles. Ensembles for Europe and for Flanders were built using the mean

probability  approach,  averaging  the  habitat  suitability  predictions  across  the  model

algorithms.  For  Flanders,  we  additionally  calculated  the  standard  deviation  of  habitat

suitability  predictions  across  the  model  algorithms  and  the  committee  average.  The

committee  average  ensemble  gives  information  on  how  many  algorithms  agree  on  a

species being present or absent. Both serve as a measure of uncertainty for the BirdWatch

optimization algorithm in WP5000. Summarized information of  model  building,  training,

and validation can also be found in our ODMAP protocol (Table S2; Zurell et al., 2020).

2.2 Results

2.2.1 European models

Model performance

All  ensemble models showed very good to excellent  predictive performance with AUC

scores ranging 0.81 - 0.94 (Table 3; performance of individual algorithms shown in table
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S3). Sensitivity values ranged from 0.77 - 0.88 and specificity ranged from 0.66 - 0.88

(Table 3). Only the Black-tailed godwit and the Tree sparrow had specificity values below

0.75 indicating slight overprediction of their European range. 

Table 3: Performance metrics of the European mean probability ensemble. The

ensemble includes the algorithms: GLM, GAM, RF, BRT, and Maxent. The

threshold was used to binarize the continuous habitat suitability predictions and

convert them into predicted presences and absences. It is the threshold that

maximizes TSS (or the sum of sensitivity and specificity) in the cross-validated

predictions. 

Species AUC Sensitivity Specificity TSS Threshold

Eurasian skylark

(Alauda arvensis)

0.91 0.87 0.78 0.65 0.54

Meadow pipit 

(Anthus pratensis)

0.94 0.84 0.88 0.72 0.47

Yellowhammer

(Emberiza citrinella)

0.90 0.87 0.78 0.65 0.28

Black-tailed godwit

(Limosa limosa)

0.81 0.83 0.66 0.49 0.19

Tree sparrow 

(Passer montanus)

0.86 0.80 0.73 0.63 0.54

European turtle dove 

(Streptopelia turtur)

0.91 0.84 0.82 0.66 0.47

Common starling

(Sturnus vulgaris)

0.91 0.88 0.79 0.67 0.59

Northern lapwing

(Vanellus vanellus)

0.88 0.77 0.84 0.61 0.59

Model predictions

All species have high suitability values and large predicted ranges (Figure 2), except the

Black-tailed godwit which is rarer and has overall lower predicted suitability. The Eurasian

skylark,  Yellowhammer,  Common  starling,  and  Northern  lapwing  have  high  suitability

areas across all of central, eastern, and western parts of Europe. The Meadow pipit has a

high  suitability  area  across  central  and  northern  parts  of  Europe,  whereas  the  Tree

sparrow and European turtle dove have their ranges across the central, eastern, western,
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and southern parts of Europe. The Black-tailed godwit  has its highest suitable area in

eastern Europe stretching to central Europe.

Figure 2: Climate suitability predictions for Europe based on the mean probability ensemble per

species. The ensembles included the model algorithms GLM, GAM, RF, BRT, and Maxent.

2.2.2 Flanders models

Model performance

For Flanders all ensemble models had very good to excellent predictive performance with

AUC ranging 0.83 - 0.94 (Table 4; performance of single algorithms shown in table S4).

The TSS and sensitivity scores also indicated fair to excellent predictive accuracy ranging

from 0.53 - 0.76 and 0.79 - 0.98, respectively (Table 4).
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Table 4: Performance metrics of the Flanders mean probability ensemble. The

ensemble includes the algorithms: GLM, GAM, RF, BRT, and Maxent. The 

threshold was used to binarize the continuous habitat suitability predictions

and convert them into predicted presences and absences. It is the

threshold that maximizes TSS (or the sum of sensitivity and specificity) in 

the cross-validated predictions. 

Species AUC TSS Sensitivity Boyce Threshold

Eurasian skylark

(Alauda arvensis)

0.9 0.65 0.86 0.92 0.27

Meadow pipit

(Anthus pratensis)

0.91 0.68 0.93 0.98 0.21

Yellowhammer

(Emberiza citrinella)

0.94 0.76 0.96 0.98 0.20

Black-tailed godwit

(Limosa limosa)

0.92 0.72 0.98 0.88 0.15

Tree sparrow 

(Passer montanus)

0.83 0.54 0.88 0.89 0.29

European turtle dove

(Streptopelia turtur)

0.86 0.56 0.85 0.87 0.23

Common starling

(Sturnus vulgaris)

0.84 0.53 0.83 0.91 0.32

Northern lapwing

(Vanellus vanellus)

0.87 0.59 0.79 0.93 0.35

Model predictions

For  each  species,  we  predicted  the  ensemble  mean  habitat  suitability  for  the  entire

Flanders region (Figure 3; predictions for each species per algorithm Figure S1 - 8). The

Northern lapwing has high habitat suitability across all parts of Flanders but especially in

the north western and eastern parts. The Black-tailed godwit also has its most suitable

areas in the north western parts with an additional small suitable area in the north east.

The  Common  starling  has  its  highest  suitability  across  the  eastern  parts  of  Flanders

whereas  the  Tree  sparrow  is  predicted  to  be  most  suited  to  the  western  parts.  The

Yellowhammer has its highest suitability in the southern and far eastern parts. For the

other species no clear spatial patterns can be recognized. From the maps of predicted

suitability, the difference in habitat preference becomes apparent leading to trade-offs for
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managing  those  species  relevant  for  the  BirdWatch  optimization  algorithm (WP5000).

These  different  habitat  preferences  are  also  visible  in  the  species-specific  response

curves. These curves describe the fitted species-environment relationships for the different

predictor variables (Figure. 4; Figures. S9 - S34). For example, figure 4 shows habitat

suitability  predicted for  the different  species in  relation to  permanent  grassland.  While

Common  starling  and  Northern  lapwing  peek  at  intermediate  levels  of  permanent

grasslands, Eurasian skylark, Meadow pipit, Black-tailed godwit, and European turtle dove

find suitable habitat under higher levels of permanent grassland.

The committee average predictions (Figure 5) and maps of standard deviation in

predicted habitat suitability (Figure 6) provide more nuanced measures of uncertainty as

potential input to WP5000.
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Figure 3: Habitat suitability predictions for Flanders based on the mean probability ensemble per 

species. The ensembles included the model algorithms GLM, GAM, RF, BRT, and Maxent.



Figure  4:  Partial  response  curves  per  species  and  Flanders  for  the  environmental  parameter

“Permanent grassland” given in % cover. A plot is empty if the variable was not used in the models

of this species. The solid line represents the mean ensemble predictions, the gray bands around

the line plot represent the standard error across the SDM algorithm.
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Figure 5: Committee averaged predictions for Flanders per species. Committee averages indicate 

the proportion of algorithms agreeing on a species being present or absent. One stands for all 

models agree on the species being present and 0 stands for all models agreeing on the species 

being absent. The model algorithms GLM, GAM, RF, BRT, and Maxent went into the ensembles.



Conclusion

We successfully applied the nested SDM approach to the first test region of Flanders. The

coarse-grained climate suitability models at European scale showed very good to excellent

predictive performance. Due to low data coverage of two species in Flanders, we were

only able to construct fine-grained land use suitability models for eight of the ten study

species. The trade-offs in habitat suitability between species indicated by the Flanders

SDMs will be relevant for the BirdWatch optimization algorithm in WP5000.

Final input to WP5000

The BirdWatch optimization algorithm will require predictions of potential habitat suitability

across  the  entire  environmental  space defined by  the  different  land  use features  and

management intensities. This allows the optimization algorithm to test different scenarios

with  combinations  of  land  use  features  and  management  intensities  not  currently

represented in the training data. Such scenarios can include, for example, promotion of

Ecological Focus Areas and optimizing the placement of ecologically beneficial elements

as  defined  by  the  European  Commission.  Thus,  as  input  to  WP5000  we  will  derive
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Figure 6: Standard deviation calculated from the habitat suitability predictions for Flanders by the 

model algorithms (GLM, GAM, RF, BRT, and Maxent).



species-specific  predictions  of  habitat  suitability  (and  their  associated  uncertainty

measures in form of standard deviation and committee average) across all combinations of

environmental  input  data.  Reasonable  bin  sizes  defining  the  step  sizes  for  each

environmental  predictor  (e.g.  5  percent  steps  vs.  1  percent  steps)  will  be  closely

coordinated with the WP5000 leads and the wider BirdWatch consortium.
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Supplementary material

Table S1: Environmental parameters used in each model algorithm for each species.

Env. Parameter Eurasian skylark Meadow pipit Yellowhammer
Black-tailed

godwit
Tree sparrow

European turtle
dove

Common starling Northern lapwing

Elevation - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Solar radiation - glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

-

Slope glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

- - - - glm, gam, rf, brt,
maxent

Soil moisture early
breeding season

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

- - -

Soil moisture full
breeding season

- - - glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Built-up land glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Tree cover glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Water cover glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent
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Cultivated
grassland

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Fallow glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Grapevine gam, rf, brt,
maxent

glm, gam, rf, brt glm, gam, rf, brt,
maxent

- - - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Hedges glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Hops glm, gam, rf, brt - glm, rf, brt - - - glm, rf, brt glm, rf, brt

Legumes glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Maize glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Orchards and
Berries

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Other cereals glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Permanent
grasslands

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Rapeseed glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt - - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent
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Root crops glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Summer cereals glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Sunflower - - - - - - - -

Vegetables glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

- - - glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

Winter cereals glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

European climate
suitability

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent

glm, gam, rf, brt,
maxent
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Table S2: ODMAP protocol describing the main steps of model construction.

ODMAP 
section

ODMAP subsection ODMAP elements

Overview Authorship Authors: Levin Wiedenroth, Damaris Zurell, 
Emma Underwood

Contact email: wiedenroth@uni-potsdam.de

Title: SDM Ensemble Flanders

Model objective Mapping Interpolation, creating maps of relative 
probability of presence

Taxon European farmland birds

Location Flanders, Belgium

Scale Spatial extent: (minX, minY, maxX, maxY, 
EPSG: 3035):
3799800, 3074600, 4031200, 3168000
(lat,lon): 50.5470558°, 2.6326917°, 51.5479145°, 
5.8196204°
Spatial resolution: 50 km / 200m
Temporal extent/resolution: 2018 (year)
Boundary: political

Biodiversity data Observation type: 
Presence-absence data at European scale. 
Presence-only data at Flanders scale. 

Type of predictors Climatic, topographic, land cover, land-use 
intensity

Conceptual model Hypotheses about species-environment 
relationships: We used a nested ensemble 
method that utilised European scale climate and 
localised land cover data including crop types, to 
predict habitat suitability of ten species of 
farmland birds across the region of Flanders.
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Assumptions Our assumptions were that:
1. species are at equilibrium within their 
environment;
2. any biases in sampling and surveying has been
reduced;
3. the most relevant ecological drivers are 
included as proxies in the model variables. 

SDM algorithms Model algorithms: Generalized linear model 
(GLM), Generalized Additive Model (GAM), 
Random Forest (RF), Boosted Regression Trees 
(BRT), and MaxEnt.
Justification of model complexity: We chose to
utilise an ensemble of different statistical (GLM, 
GAM) and supervised learning algorithms (RF, 
BRT, MaxEnt) to get the best overall mean 
response.
Model averaging/ensemble modelling used?: 
Yes

Model workflow Conceptual description of modelling steps 
including model fitting, assessment and 
prediction:
01 - European climate data pre-preparations: 
reprojecting the raw climate layers before 
stacking and calculating month-wise means.
02 - SDM Europe - transforming the EBBA bird 
data to match the climatic data, extraction of 
climate data for each occurrence cell, spatial 
thinning, spatial blocking, collinearity testing, 
SDM modelling and ensemble building.
03 - occurrence data prep Flanders: filtering bird 
occurrences based on breeding season, 
removing duplicates (from within the same 200m 
cell), spatial thinning using buffer method, 
creation of pseudo absences.
04 - Ensemble SDM: create a nested SDM for 
Flanders using mean climatic suitability extracted 
from European SDM and localised environmental 
and land cover variables (check for collinearity 
between all predictors), model building and 
testing, assessment, prediction.

Software, codes and 
data

We used R version 4.4.1. With packages: terra, 
dplyr, sfheaders, corrplot, mecofun, 
randomForest, gbm, dismo, mgcv, maxnet, sf, 
blockCV, ecospat
Availability of codes and data: currently for 
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internal circulation within project

Data Biodiversity data Taxon names: Alauda arvensis, Anthus 
pratensis, Emberiza citrinella, Lanius collurio, 
Limosa limosa, Passer montanus, Saxicola 
rubetra, Streptopelia turtur, Sturnus vulgaris, 
Vanellus vanellus
Biodiversity data source: EBBA2 (Europe); 
Natuurpunt (11.09.2023 - Flanders)
Sampling design:: EBBA2 data are non-
standardised monitoring data collected between 
2013-2018 across entire Europe. EBBA2 provide 
presence-absence data at 50 km spatial 
resolution.
Natuurpunt is a citizen science organisation (also 
non-standardised) with specialised validation, 
post-processing and data cleaning. They provide 
spatially-explicit presence-only data.
Sample size per taxon: See deliverable D4.1.
Details on scaling: all non raster data were 
converted to raster type at 200 m cell resolution 
to match environmental data from the rest of the 
project. Occurrences were spatially thinned to 
account for spatial autocorrelation.
Data cleaning/filtering steps: Occurrences were
filtered to only include the specific breeding 
period for each species. For full details on this 
process, see D4.1 including accuracy of 
observation, validation by an expert, and type of 
behaviours observed.
Background data derivation: random 
background points were generated to serve as 
pseudo-absences in the Flanders models. We 
generated 10 times as many background data as 
presences were available.
Potential errors and biases: misidentification 
was accounted for by expert validation, 
georeferencing errors minimized based on scale 
of modelling, and sampling bias accounted for by 
our pre-processing steps including removing 
duplicate occurrences per cell and spatial 
thinning.

Data partitioning Training data: The final models were trained on 
all data. For several model building steps 
(collinearity checks, threshold optimization) and 
for validation, a 5-fold spatial block cross-
validation was used.
Selection of validation data: hexagonal spatial 
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blocks were generated using the 
cv_spatial_block_autocor function.

Predictor variables Climatic: 19 bioclimatic variables;
T  opographic  : DEM, slope, solar radiation;
H  abitat  : built-up cover, tree cover, water cover, 
soil moisture entire breeding season, soil 
moisture early breeding season;
C  rop types  : cultivated grassland, orchards and 
berries, other cereals, permanent grassland, 
rapeseed, root crops, summer cereals, sunflower,
vegetables, winter cereals, fallow, grapevine, 
hedges, hops, legumes, maize, miscellaneous, 
and rapeseed.
Details on data sources: CHELSA v2.1 (2022) 
https://chelsa-climate.org/wp-admin/download-
page/CHELSA_tech_specification_V2.pdf
Spatial resolution: CHELSA (~1km) global extent.
Map projection: EPSG: 3035 or WGS 84 
transformed to EPSG: 3035.
Temporal resolution: 2018

Details on data processing and on spatial, 
temporal and thematic scaling: CHELSA data 
(at ~1km resolution) were upscaled to 50km to 
match the EBBA2 occurrence grid using bilinear 
interpolation.

Model Multicollinearity We used the select07 method from Dormann et 
al. (2013) to check for and reduce 
multicollinearity. We calculated Spearman's rank 
correlation for each pair of variables and from 
pairs with |rho|>0.7 we removed the less 
important variable in terms of cross-validated 
univariate importance. The climate suitability 
predicted from European SDM was always 
included in the fine-scale models. 

Model settings GLM: linear and quadratic terms, AIC-based step-
wise variable selection. binomial link.
GAM: cubic smoothing splines with 4 degrees of 
freedom. binomial link.
RF: nodesize= 5, number of trees = 1000.
BRT: learning rate = model specific to end up 
between 1000 and 5000 trees, bag fraction = 
0.75, tree complexity = 2. binomial link.
Maxent: features = lh.
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Model estimates Assessment of coefficients: not applicable.
Uncertainties: not applicable.
Variable importance: estimated for RF and BRT.

Model selection / 
averaging / ensemble

Model selection strategy: models with AUC < 
0.7 were not used in the nested ensemble.
Model averaging: for the fine-scale, we ran 10 
replicate BRT, RF and Maxent and averaged their
predictions.
Nesting method: we used the covariate method 
(Adde et al., 2023)
Ensemble method: Ensemble predictions were 
derived by calculating the mean habitat suitability 
across the different SDM algorithms.

Threshold selection transforming continuous predictions into 
binary predictions: We use the maxTSS 
approach to find the optimal threshold for 
binarizing continuous habitat suitability 
predictions and deriving predicted presences and 
absences. The threshold was optimized using 
cross-validated predictions. 

Assessment Performance 
statistics

Performance statistics estimated on validation
data: 
model performance was assessed with a 5-fold 
spatial block cross-validation.The following model
performance metrics were used: "AUC", 
"TSS","Sens", "Spec", Boyce

Prediction Prediction output Prediction unit:
All models from all algorithms were combined into
a single df, then thresholded for presence-
absence predictions, and the mean of the 
probabilities was calculated.

Uncertainty 
quantification

Algorithmic uncertainty: we assessed 
uncertainty in predictions by deriving the standard
deviation across model predictions from the 
different SDM algorithms, and the committee 
average
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Table S3: Performance measures for all European SDMs per species

Species Performance metric GLM GAM RF BRT Maxent

Alauda arvensis AUC 0.90 0.88 0.90 0.91 0.91

Alauda arvensis Sensitivity 0.80 0.87 0.87 0.90 0.90

Alauda arvensis Specificity 0.84 0.71 0.77 0.75 0.74

Alauda arvensis Explained deviance 0.50 0.53 0.85 0.72 0.13

Alauda arvensis Threshold 0.71 0.52 0.52 0.48 0.38

Anthus pratensis AUC 0.92 0.91 0.93 0.93 0.93

Anthus pratensis Sensitivity 0.91 0.84 0.83 0.85 0.88

Anthus pratensis Specificity 0.79 0.83 0.87 0.87 0.82

Anthus pratensis Explained deviance 0.55 0.57 0.86 0.72 0.41

Anthus pratensis Threshold 0.43 0.49 0.44 0.41 0.39

Emberiza citrinella AUC 0.88 0.88 0.91 0.90 0.87

Emberiza citrinella Sensitivity 0.71 0.88 0.91 0.84 0.75

Emberiza citrinella Specificity 0.87 0.76 0.79 0.84 0.85

Emberiza citrinella Explained deviance 0.58 0.61 0.87 0.77 0.31

Emberiza citrinella Threshold 0.56 0.25 0.38 0.32 0.31

Limosa limosa AUC 0.79 0.77 0.83 0.79 0.78

Limosa limosa Sensitivity 0.85 0.85 0.76 0.71 0.82

Limosa limosa Specificity 0.63 0.59 0.79 0.73 0.63

Limosa limosa Explained deviance 0.25 0.25 0.77 0.54 0.18

Limosa limosa Threshold 0.16 0.13 0.22 0.13 0.31

Passer montanus AUC 0.82 0.87 0.87 0.86 0.82

Passer montanus Sensitivity 0.74 0.81 0.84 0.81 0.73

Passer montanus Specificity 0.76 0.74 0.75 0.74 0.77

Passer montanus Explained deviance 0.46 0.50 0.83 0.62 0.06

Passer montanus Threshold 0.64 0.63 0.58 0.63 0.44

Streptopelia turtur AUC 0.90 0.89 0.91 0.91 0.91
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Streptopelia turtur Sensitivity 0.82 0.85 0.83 0.84 0.85

Streptopelia turtur Specificity 0.82 0.77 0.83 0.84 0.80

Streptopelia turtur Explained deviance 0.51 0.52 0.84 0.64 0.30

Streptopelia turtur Threshold 0.48 0.50 0.53 0.52 0.39

Sturnus vulgaris AUC 0.91 0.90 0.90 0.90 0.89

Sturnus vulgaris Sensitivity 0.85 0.85 0.88 0.91 0.84

Sturnus vulgaris Specificity 0.84 0.84 0.76 0.76 0.82

Sturnus vulgaris Explained deviance 0.52 0.54 0.83 0.65 0.01

Sturnus vulgaris Threshold 0.75 0.73 0.59 0.58 0.43

Vanellus vanellus AUC 0.87 0.85 0.88 0.86 0.85

Vanellus vanellus Sensitivity 0.80 0.71 0.78 0.84 0.73

Vanellus vanellus Specificity 0.82 0.86 0.86 0.76 0.81

Vanellus vanellus Explained deviance 0.41 0.44 0.81 0.64 0.20

Vanellus vanellus Threshold 0.65 0.74 0.56 0.52 0.44

Table S4: Performance measures for all SDMs of Flanders per species

Species performance metric GLM GAM RF BRT Maxent

Alauda arvensis AUC 0.83 0.83 0.98 0.81 0.83

Alauda arvensis TSS 0.5 0.5 0.9 0.48 0.51

Alauda arvensis Sensitivity 0.77 0.8 0.99 0.84 0.85

Alauda arvensis Explained deviance 0.69 0.7 0.77 0.49 0.28

Alauda arvensis Boyce index 0.59 0.97 1 0.59 0.95

Alauda arvensis Threshold 0.05 0.42 0.54 0.03 0.21

Anthus pratensis AUC 0.81 0.8 0.99 0.81 0.84

Anthus pratensis TSS 0.45 0.48 0.92 0.48 0.54

Anthus pratensis Sensitivity 0.73 0.75 0.99 0.75 0.83

Anthus pratensis Explained deviance 0.68 0.71 0.79 0.6 0.33

Anthus pratensis Boyce index 0.73 0.91 0.99 0.82 0.91
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Anthus pratensis Threshold 0.05 0.45 0.54 0.04 0.18

Emberiza citrinella AUC 0.87 0.9 0.99 0.9 0.91

Emberiza citrinella TSS 0.63 0.66 0.9 0.64 0.68

Emberiza citrinella Sensitivity 0.83 0.87 0.97 0.85 0.89

Emberiza citrinella Explained deviance 0.75 0.77 0.83 0.63 0.41

Emberiza citrinella Boyce index 0.62 0.96 0.97 0.88 0.95

Emberiza citrinella Threshold 0.06 0.39 0.66 0.04 0.16

Limosa limosa AUC 0.85 0.83 0.98 0.82 0.85

Limosa limosa TSS 0.54 0.51 0.93 0.48 0.54

Limosa limosa Sensitivity 0.79 0.84 0.99 0.61 0.76

Limosa limosa Explained deviance 0.73 0.74 0.79 0.62 0.36

Limosa limosa Boyce index 0.56 0.69 0.96 0.45 0.9

Limosa limosa Threshold 0.04 0.24 0.55 0.05 0.13

Passer montanus AUC 0.73 0.74 0.94 0.71 0.74

Passer montanus TSS 0.33 0.42 0.77 0.3 0.39

Passer montanus Sensitivity 0.68 0.84 0.9 0.7 0.75

Passer montanus Explained deviance 0.58 0.59 0.61 0.31 0.2

Passer montanus Boyce index 0.74 0.73 0.9 0.55 0.56

Passer montanus Threshold 0.07 0.43 0.62 0.06 0.39

Streptopelia turtur AUC 0.76 0.75 0.95 0.78 0.78

Streptopelia turtur TSS 0.41 0.4 0.8 0.46 0.45

Streptopelia turtur Sensitivity 0.71 0.77 0.96 0.56 0.74

Streptopelia turtur Explained deviance 0.64 0.64 0.6 0.37 0.2

Streptopelia turtur Boyce index 0.48 0.76 0.77 0.45 0.84

Streptopelia turtur Threshold 0.06 0.43 0.42 0.05 0.29

Sturnus vulgaris AUC 0.71 0.71 0.97 0.73 0.74

Sturnus vulgaris TSS 0.31 0.32 0.84 0.33 0.35

Sturnus vulgaris Sensitivity 0.81 0.73 0.94 0.69 0.84
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Sturnus vulgaris Explained deviance 0.55 0.56 0.69 0.27 0.14

Sturnus vulgaris Boyce index 0.61 0.93 1 0.55 0.95

Sturnus vulgaris Threshold 0.06 0.48 0.63 0.07 0.32

Vanellus vanellus AUC 0.77 0.78 0.98 0.8 0.8

Vanellus vanellus TSS 0.41 0.43 0.87 0.43 0.44

Vanellus vanellus Sensitivity 0.78 0.74 0.97 0.68 0.81

Vanellus vanellus Explained deviance 0.59 0.61 0.72 0.32 0.19

Vanellus vanellus Boyce index 0.6 0.94 1 0.78 0.97

Vanellus vanellus Threshold 0.07 0.53 0.61 0.08 0.33
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Figure S1: Habitat suitability predictions for the Eurasian skylark and Flanders by model algorithm.
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Figure S2: Habitat suitability predictions for the Meadow pipit and Flanders by model algorithm.

Figure S3: Habitat suitability predictions for the Yellowhammer and Flanders by model algorithm.
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Figure S4: Habitat suitability predictions for the Black-tailed godwit and Flanders by model 

algorithm.

Figure S5: Habitat suitability predictions for the Tree sparrow and Flanders by model algorithm.
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Figure S6: Habitat suitability predictions for the European turtle dove and Flanders by model 

algorithm.

Figure S7: Habitat suitability predictions for the Common starling and Flanders by model algorithm.
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Figure S8: Habitat suitability predictions for the Northern lapwing and Flanders by model algorithm.



Figure S9: Partial  response curves per species  and Flanders for the environmental  parameter

“European  climate  suitability”  ranging  from  zero  to  one.  The  solid  line  represents  the  mean

ensemble predictions, the gray bands around the line plot represent the standard error across the

SDM algorithm.

Figure S10: Partial response curves per species and Flanders for the environmental parameter

“Built-up cover” given in %. A plot is empty if  the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S11: Partial response curves per species and Flanders for the environmental parameter

“Cultivated grassland” given in % cover. A plot is empty if the variable was not used in the models

of this species. The solid line represents the mean ensemble predictions, the gray bands around

the line plot represent the standard error across the SDM algorithm.

Figure S12: Partial response curves per species and Flanders for the environmental parameter

“Elevation” given in meters. A plot is empty if  the  variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S13: Partial response curves per species and Flanders for the environmental parameter

“Fallow” given in % cover. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.

Figure S14: Partial response curves per species and Flanders for the environmental parameter

“Grapevine” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S15: Partial response curves per species and Flanders for the environmental parameter

“Hedges” given in % cover. A plot is empty if  the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.

Figure S16: Partial response curves per species and Flanders for the environmental parameter

“Hops” given in % cover. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.



Figure S17: Partial response curves per species and Flanders for the environmental parameter

“Legumes” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.

Figure S18: Partial response curves per species and Flanders for the environmental parameter

“Maize” given in % cover. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.



Figure S19: Partial response curves per species and Flanders for the environmental parameter

“Orchards and Berries” given in % cover. A plot is empty if the variable was not used in the models

of this species. The solid line represents the mean ensemble predictions, the gray bands around

the line plot represent the standard error across the SDM algorithm.

Figure S20: Partial response curves per species and Flanders for the environmental parameter

“Other cereals” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S21: Partial response curves per species and Flanders for the environmental parameter

“Rapeseed” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.

Figure S22: Partial response curves per species and Flanders for the environmental parameter

“Root crops” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S23: Partial response curves per species and Flanders for the environmental parameter

“Slope” given in degree. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.

Figure S24: Partial response curves per species and Flanders for the environmental parameter

“Soil moisture early breeding season” given in m³/m³. A plot is empty if the variable was not used in

the models of this species. The solid line represents the mean ensemble predictions, the gray

bands around the line plot represent the standard error across the SDM algorithm.



Figure S25: Partial response curves per species and Flanders for the environmental parameter

“Soil moisture full breeding season” given in m³/m³. A plot is empty if the variable was not used in

the models of this species. The solid line represents the mean ensemble predictions, the gray

bands around the line plot represent the standard error across the SDM algorithm.

Figure S26: Partial response curves per species and Flanders for the environmental parameter

“solar radiation” given in kWh/m². A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S27: Partial response curves per species and Flanders for the environmental parameter

“Summer cereals” given in % cover. A plot is empty if the variable was not used in the models of

this species. The solid line represents the mean ensemble predictions, the gray bands around the

line plot represent the standard error across the SDM algorithm.

Figure S28: Partial response curves per species and Flanders for the environmental parameter

“Sunflower” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S29: Partial response curves per species and Flanders for the environmental parameter

“Trees” given in % cover. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.

Figure S30: Partial response curves per species and Flanders for the environmental parameter

“Vegetables” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.



Figure S31: Partial response curves per species and Flanders for the environmental parameter

“Water” given in % cover. A plot is empty if the variable was not used in the models of this species.

The solid line represents the mean ensemble predictions, the gray bands around the line plot

represent the standard error across the SDM algorithm.

Figure S32: Partial response curves per species and Flanders for the environmental parameter

“Winter cereals” given in % cover. A plot is empty if the variable was not used in the models of this

species. The solid line represents the mean ensemble predictions, the gray bands around the line

plot represent the standard error across the SDM algorithm.


